
On highly potential words

Bojan Bašić
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Abstract

We introduce a class of infinite words, called highly potential words
because of their seemingly high potential of being a good supply of
examples and counterexamples regarding various problems on words.
We prove that they are all aperiodic words of finite positive defect, and
having their set of factors closed under reversal, thus giving examples
Brlek and Reutenauer were looking for. We prove that they indeed
satisfy the Brlek-Reutenauer conjecture. We observe that each highly
potential word is recurrent, but not uniformly recurrent. Considering
a theorem from the paper of Balková, Pelantová and Starosta, later
found to be incorrect, we show that highly potential words constitute
an infinite family of counterexamples to that theorem. Finally, we
construct a highly potential word which is a fixed point of a noniden-
tical morphism, thus showing that a stronger version of a conjecture
by Blondin-Massé et al., as stated by Brlek and Reutenauer, is false.
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1 Introduction

Problems on palindromes in infinite words have recently been studied quite
a lot. Some new notions were introduced, such as palindromic defect and
palindromic complexity, and Brlek and Reutenauer [8] conjectured an equal-
ity stating a connection between the defect, the palindromic complexity, and
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the (factor) complexity of an infinite word w whose set of factors is closed un-
der reversal. They proved their conjecture for periodic words, and observed
that, on the basis of some earlier results, the conjecture also holds for words
of defect 0. They further tested the conjecture for some words of infinite
defect, namely: the Thue-Morse word, the paper folding sequences and the
generalized Rudin-Shapiro sequences, and the result was positive. The next
logical step would be to find more evidence for the conjecture by testing it
for aperiodic words of finite positive defect, at least for a few examples, but
it turned out that the authors were unable to find even a single such word
(having the set of factors closed under reversal).

In the same paper, Brlek and Reutenauer recalled the conjecture of Blon-
din-Massé et al. [6], stating that there does not exist an aperiodic word of
finite positive defect that is a fixed point of some primitive morphism. Under
the stronger conjecture that there does not exist an aperiodic word of finite
positive defect that is a fixed point of any nonidentical morphism, Brlek and
Reutenauer showed that their conjecture holds for fixed points of nonidentical
morphisms. The assumed conjecture remained open.

Balková, Pelantová and Starosta [3] proved the Brlek-Reutenauer con-
jecture for uniformly recurrent words. Apart from this proof, they gave a
few other related theorems, one of which was later shown to be incorrect [5].
However, only one counterexample has been found, having a rather patholog-
ical flavor. It remained unanswered whether there are more counterexamples,
possibly constituting some less artificial family.

In this paper we introduce a class of words related to all the problems
discussed above. Namely, the work is divided into sections as follows.

In Section 2 we recall the necessary definitions and results.
In Section 3 we define a construction of a class of words. Since they seem

to have a high potential to serve as examples and counterexamples in various
problems on words, we dub them highly potential words. We observe that
each highly potential word has its set of factors closed under reversal, that
it is aperiodic, recurrent, but not uniformly recurrent. We prove that each
highly potential word has finite positive defect.

In Section 4 we prove that the Brlek-Reutenauer conjecture indeed holds
for highly potential words. Note that, since highly potential words are not
uniformly recurrent, this result does not follow from the result of Balková,
Pelantová and Starosta.

In Section 5 we show that highly potential words are counterexamples to
the statement of a theorem by Balková, Pelantová and Starosta.
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In Section 6 we construct a highly potential word that is a fixed point of
a nonidentical morphism. Since highly potential words are aperiodic words
of finite positive defect, this construction disproves Brlek and Reutenauer’s
strengthening of the conjecture by Blondin-Massé et al.

2 Preliminaries

Given a finite alphabet Σ, let Σ∗ denote the set of all finite words over Σ,
and let Σ∞ denote the set of all finite or infinite words over Σ (that is, the
set of all finite or infinite sequences of letters from Σ). The length of a word
w ∈ Σ∗ is denoted by |w|, and the unique word of length equal to 0, called
the empty word, is denoted by ε. Given a finite word w and k ∈ N0 (where
N0 denotes the set of nonnegative integers, while we reserve the notation N
for positive integers), we write wk for ww . . . w| {z }

k times

(called the kth power of a

word w). We write w∞ for the infinite word www . . . . Infinite words that
are of the form w∞ are called periodic. Infinite words that are of the form
uw∞ (where u, w ∈ Σ∗, w 6= ε) are called eventually (or ultimately) periodic.
Infinite words that are not eventually periodic are called aperiodic.

We define map e: Σ∗ → Σ∗, called reversal, as follows: if w = a1a2 . . . an,
where a1, a2, . . . , an ∈ Σ, then Üw = anan−1 . . . a1. A word w is a palindrome
if w = Üw.

A word v ∈ Σ∗ is a suffix of a word w ∈ Σ∗ if there exists a word u ∈ Σ∗

such that w = uv. A word v ∈ Σ∗ is a prefix of a word w ∈ Σ∞ (resp.
w ∈ Σ∗) if there exists a word u ∈ Σ∞ (resp. u ∈ Σ∗) such that w = vu.
A word v ∈ Σ∗ is a factor of a word w ∈ Σ∞ (resp. w ∈ Σ∗) if there exist
words u1 ∈ Σ∗, u2 ∈ Σ∞ (resp. u2 ∈ Σ∗) such that w = u1vu2. The set of all
factors of a word w is denoted by Fact(w). We say that the set of factors of
w is closed under reversal if for any v ∈ Fact(w) we have ev ∈ Fact(w). The
set of all palindromic factors of a word w is denoted by Pal(w).

An infinite word w is recurrent if each of its factors has infinitely many
occurrences in w, and w is uniformly recurrent if it is recurrent and, for
each of its factors, the gaps between consecutive occurrences of it in w are
bounded (by gap, we mean the difference between two positions at which
two consecutive occurrences of the considered factor begin). The following
theorems, the proof of which can be found, e.g., in [10, Proposition 2.11] and
[1, Example 10.9.1], respectively, will be useful.
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Theorem 2.1. Given an infinite word w, if Fact(w) is closed under reversal,
then w is recurrent.

Theorem 2.2. If an infinite word is periodic, then it is uniformly recurrent.

A function ϕ : Σ∗ → Σ∗ is called a morphism if for all w, v ∈ Σ∗ we have
ϕ(wv) = ϕ(w)ϕ(v). Clearly, a morphism is uniquely determined by images
of the letters, and thus it is possible to extend any given morphism to infinite
words in the natural way. We say that a word w ∈ Σ∞ is a fixed point of a
morphism ϕ if ϕ(w) = w.

Let an infinite word w be given. The factor complexity (or only complex-
ity) of w is the function Cw : N0 → N0 defined by

Cw(n) = |{v ∈ Fact(w) : |v| = n}|.

The palindromic complexity of w is the function Pw : N0 → N0 defined by

Pw(n) = |{v ∈ Pal(w) : |v| = n}|.

Of course, we have

|Pal(w)| =
|w|X
n=0

Pw(n).

We now recall an inequality due to Droubay, Justin and Pirillo [9, Propo-
sition 2].

Theorem 2.3. For any finite word w we have:

|Pal(w)| 6 |w|+ 1.

This inequality motivated Brlek et al. [7] to define palindromic defect (or
only defect) of a finite word w by

D(w) = |w|+ 1− |Pal(w)|.

The following theorem (see, e.g., [6, Lemma 1]) gives an important property
of the defect.

Theorem 2.4. Let w ∈ Σ∗ and v ∈ Fact(w). Then D(v) 6 D(w).
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The above theorem motivates the following definition of the defect of an
infinite word w:

D(w) = sup
v∈Fact(w)

D(v).

Clearly, this equality also holds for finite words.
Another important inequality connecting the notions discussed above is

proved by Baláži, Masáková and Pelantová [2, Theorem 1.2(ii)]:

Theorem 2.5. Let w be an infinite word with Fact(w) being closed under
reversal. For each n ∈ N0 we have

Pw(n) + Pw(n + 1) 6 Cw(n + 1)− Cw(n) + 2.

Actually, in [2], the above inequality is formulated only for uniformly
recurrent words. However, it is easy to check that the proposed proof never
relies on this assumption, but only on the assumption that w is recurrent;
since, by Theorem 2.1, any word w having Fact(w) closed under reversal is
recurrent, the given statement follows.

Finally, we state the Brlek-Reutenauer conjecture, recounted in Section
1. It predicts the following equality dealing with the defect D(w) and the
function Tw : N0 → N0, inspired by Theorem 2.5, defined by

Tw(n) = Cw(n + 1)− Cw(n) + 2− Pw(n)− Pw(n + 1).

Conjecture 2.6. Let w be an infinite word with Fact(w) being closed under
reversal. Then:

2D(w) =
∞X

n=0

Tw(n).

3 Highly potential words. Construction and

basic properties

Let w be a finite word that is not a palindrome, and let c be a letter that
does not occur in w. Define w0 = w and, for i ∈ N,

wi = wi−1c
ißwi−1. (1)

Finally, let
hpw(w) = lim

i→∞
wi. (2)

The meaning of the above limit is clear since each wi is a prefix of wi+1. We
call hpw(w) the highly potential word generated by w.
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Note. The above construction bears a resemblance (at least visually) to
the Zimin words, introduced in [12] with a motivation in semigroup theory.
The sequence of Zimin words is defined recursively by Z1 = a1 and Zn+1 =
Znan+1Zn, where a1, a2, a3 . . . are letters. Somewhat recently, the Zimin
words have been reinvented under the name Fraenkel words, related to a
combinatorial translation of a problem from number theory (see, e.g., [11]).
However, there are some major differences between highly potential words
and the Zimin words (actually, not the Zimin words themselves but their
limit instead, since that is what “corresponds” to a highly potential word):

1. The limit of Zimin words is only one object, while the class of highly
potential words contains infinitely many infinite words; even more, each
nonpalindromic finite word generates one highly potential word.

2. The main problem with the limit of Zimin words, at least from a per-
spective of studying infinite words, is the fact that the limit of Zimin
words has infinitely many different letters. Therefore, it is even not
an infinite word (over a finite alphabet). On the other hand, a highly
potential word can have as few as three different letters, hpw(ab) being
the example.

We also note the following interesting link between the Zimin words and
highly potential words: if we note lengths of the sequences of consecutive
occurrences of the letter c in hpw(w), we get:

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5 . . . ,

which is exactly the limit of sequence of Zimin words 1, 121, 1213121,
121312141213121...

The following proposition is easy to prove, but is of key importance.

Proposition 3.1. Let hpw(w) be a highly potential word. Then:

a) Fact(hpw(w)) is closed under reversal;

b) hpw(w) is recurrent;

c) hpw(w) is not uniformly recurrent;

d) hpw(w) is aperiodic.
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Proof. a) Let v ∈ Fact(hpw(w)). Choose i ∈ N0 large enough such that
v ∈ Fact(wi). Since wi+1 = wic

i+1fwi, we have ev ∈ Fact(wi+1), and thus
ev ∈ Fact(hpw(w)).

b) Follows from a) and Theorem 2.1.
c) Since w ∈ Fact(hpw(w)), and since we can always find two consecutive

occurrences of w in hpw(w) with arbitrarily many letters c in the gap between,
the statement follows.

d) As in c), we see that not only that hpw(w) is not uniformly recurrent,
but for any u, v such that hpw(w) = uv, v is not uniformly recurrent; there-
fore, v is not periodic, which implies that hpw(w) is not eventually periodic,
and the conclusion follows by Theorem 2.2. �

The main result of this section is the following theorem.

Theorem 3.2. Let hpw(w) be a highly potential word. Then D(hpw(w)) =
D(w) + 1. In particular,

0 < D(hpw(w)) <∞.

Proof. Let w = w0 = a1a2 . . . al, where a1, a2, . . . , al ∈ Σ. Since

w1 = w0cÝw0 = a1a2 . . . alcal . . . a2a1,

it is easy to see that

Pal(w1) = Pal(w0) ∪ {asas+1 . . . alcal . . . as+1as : 1 6 s 6 l} ∪ {c},

where these sets are disjoint. Therefore,

D(w1) = |w1|+ 1− |Pal(w1)| = (2l + 1) + 1− (|Pal(w0)|+ l + 1)

= l + 1− |Pal(w0)| = |w0|+ 1− |Pal(w0)| = D(w0) = D(w).

Since

w2 = w1ccÝw1 = a1a2 . . . alcal . . . a2a1cca1a2 . . . alcal . . . a2a1,

having in mind that w = a1a2 . . . al is not a palindrome, it is easy to see that

Pal(w2) = Pal(w1)

∪ {asas+1 . . . alcal . . . a2a1cca1a2 . . . alcal . . . as+1as : 1 6 s 6 l}

∪ {as . . . a2a1cca1a2 . . . as : l > s > 1}

∪ {cal . . . a2a1cca1a2 . . . alc, cc}.
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Therefore,

D(w2) = |w2|+ 1− |Pal(w2)| = (4l + 4) + 1− (|Pal(w1)|+ l + l + 2)

= 2l + 3− |Pal(w1)| = |w1|+ 2− |Pal(w1)| = D(w1) + 1

= D(w) + 1.

We are now going to prove that D(wi) = D(wi−1) for each i > 3. Note
that wi is a palindrome for each i > 1. Let i > 3 be given, and let wi−2 =
b1b2 . . . bm, where b1, b2, . . . , bm ∈ Σ. We have

wi−1 = wi−2c
i−1ßwi−2 = b1b2 . . . bmci−1bm . . . b2b1

and

wi = wi−1c
ißwi−1 = b1b2 . . . bmci−1bm . . . b2b1c

ib1b2 . . . bmci−1bm . . . b2b1.

We claim that

Pal(wi) = Pal(wi−1)

∪ {bsbs+1 . . . bmci−1bm . . . b2b1c
ib1b2 . . . bmci−1bm . . . bs+1bs

: 1 6 s 6 m}

∪ {csbm . . . b2b1c
ib1b2 . . . bmcs : i− 1 > s > 1}

∪ {bs . . . b2b1c
ib1b2 . . . bs : m > s > 1}

∪ {ci} ∪ {csb1b2 . . . bmcs : 1 6 s 6 i− 1}.

Indeed: all the palindromes added in the first set are new, because there is
no factor ci in wi−1; all the palindromes added in the second, the third and
the fourth set are new for the same reason; finally, all the words added in the
fifth set are palindromes because wi−2 = b1b2 . . . bm is a palindrome, and it
can be seen that all of them also are new. Further, it can be easily checked
that the list above is complete. Therefore,

D(wi) = |wi|+ 1− |Pal(wi)|

= (4m + 3i− 2) + 1− (|Pal(wi−1)|+ m + (i− 1) + m + 1 + (i− 1))

= 2m + i− |Pal(wi−1)| = |wi−1|+ 1− |Pal(wi−1)| = D(wi−1).
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Altogether, D(w0) = D(w1) = D(w) and D(wi) = D(w) + 1 for i > 2.
Because of Theorem 2.4 and the equality (2), we have:

sup
v∈Fact(hpw(w))

D(v) = sup
i∈N0

D(wi),

and thus
D(hpw(w)) = sup

i∈N0

D(wi) = D(w) + 1,

which was to be proved. �

4 Conjecture 2.6 for highly potential words

In this section we prove that highly potential words satisfy the Brlek-Reute-
nauer conjecture.

Theorem 4.1. For each highly potential word hpw(w) we have:

2D(hpw(w)) =
∞X

n=0

Thpw(w)(n).

The proof is preceded by a series of lemmas. Lemmas 4.2 and 4.3 are
intermediate steps toward Lemmas 4.4 and 4.5, which are then used directly
in the proof of Theorem 4.1. For the rest of this section, let w = w0 =
a1a2 . . . al, where a1, a2, . . . , al ∈ Σ, and let |wi| = li. Since, by (1), the
sequence l0, l1, l2 . . . satisfies the recurrent relation li = 2li−1 + i with l0 = l,
it is an easy exercise in recurrent relations to show that li = (l+2) ·2i− i−2.

Lemma 4.2. Let n > 1 be given. Each v ∈ Pal(hpw(w)) \ Pal(w) such that
|v| = n is uniquely determined by the number of consecutive occurrences of
the letter c in the middle of the palindrome v.

Further, the letter c may consecutively occur exactly k > 1 times in the
middle of the palindrome v if and only if k 6 n 6 (l + 2) · 2k + k and
k ≡ n (mod 2).

Proof. Let us first show that for each v ∈ Pal(hpw(w)) \ Pal(w) there is
a sequence of consecutive occurrences of the letter c in the middle of the
palindrome v. Suppose the opposite: the middle letter, or the two middle
letters, of v are 6= c. Since v /∈ Pal(w), it follows that there exists a letter
c in the word v. We now have v = ucv′ceu, where v′ does not contain the
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letter c. However, from (1) easily follows that v′ = w0 or v′ = Ýw0, which is
impossible since v′ must be a palindrome while w0 is not.

From (1), we see that the letter c occurs exactly k times consecutively
only in the word wk and its further copies in hpw(w). We have:

wk = wk−1c
kßwk−1;

wk+1 = wkc
k+1Ýwk = wkc

k+1wk = wk−1c
kßwk−1c

k+1wk−1c
kßwk−1;

wk+2 = wk+1c
k+2ßwk+1 = wk+1c

k+2wk+1

= wk−1c
kßwk−1c

k+1wk−1c
kßwk−1c

k+2wk−1c
kßwk−1c

k+1wk−1c
kßwk−1.

Therefore, the simultaneous “extending” of both ends of the word ck can last
only till we reach ck+1wk−1c

kßwk−1c
k+1, since at this point the following letter

on the right side is c and on the left side is 6= c, or vice versa (clearly, the
same holds for further copies of wk+2). Thus, the letter c consecutively occurs
exactly k times in the middle of a palindrome of a given length n if and only
if the palindrome is a middle section of ck+1wk−1c

kßwk−1c
k+1, and therefore it

is uniquely determined. Furthermore, we see that such a palindrome exists
if and only if k ≡ n (mod 2) and

k 6 n 6 2lk−1 + 3k + 2 = 2((l + 2) · 2k−1 − (k − 1)− 2) + 3k + 2

= (l + 2) · 2k − 2k + 2− 4 + 3k + 2

= (l + 2) · 2k + k,

which was to be proved. �

Lemma 4.3. Let n > l + 3 be given. For each v ∈ Fact(hpw(w)) such that
|v| = n, there either exists exactly one letter d such that vd ∈ Fact(hpw(w)),
or exist exactly two letters d1, d2 such that vd1, vd2 ∈ Fact(hpw(w)).

Further, the latter case occurs if and only if v ends with exactly k letters
c, with k 6 n 6 (l + 2) · 2k−1 + k − 1.

Proof. Observe the following easy to see corollary of the definition of hpw(w):
for any occurrence of the letter c in hpw(w) such that both the letters preced-
ing it and following it are 6= c, this letter c is necessarily followed by Ýw0; for
any occurrence of a sequence of two or more consecutive letters c in hpw(w),
this sequence is followed by w0.
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Let v = b1b2 . . . bn. Assume that v ends with exactly k letters c, where
0 6 k 6 n.

Consider the case k = 0, that is, bn 6= c. Since (l + 2) · 2k−1 + k − 1 =
(l + 2) · 2−1 + 0 − 1 = l

2
< n, we have to prove that in this case there is

uniquely determined letter d such that vd ∈ Fact(hpw(w)). Since n > l + 3,
the letter c must occur in v; in fact, it must occur in b3b4 . . . bn. Let bt = c
be the last occurrence of c in v, where 3 6 t 6 n − 1. We thus have that
bt+1bt+2 . . . bn is a prefix of w0 or Ýw0. By the observation given above, we see
that if bt−1 = c, then bt+1bt+2 . . . bn is a prefix of w0, while if bt−1 6= c, then
bt+1bt+2 . . . bn is a prefix of Ýw0. Both of these possibilities lead to conclusion
that there is only one letter d such that vd ∈ Fact(hpw(w)): d is the letter
that follows bt+1bt+2 . . . bn in w0, respectively Ýw0, or, if bt+1bt+2 . . . bn is equal
to w0 or Ýw0, then d = c.

Let now k = n, that is, v = cn. Since (l + 2) · 2k−1 + k − 1 = (l + 2) ·
2n−1 + n − 1 > n, we have to prove that in this case there are exactly two
letters d1, d2 such that vd1, vd2 ∈ Fact(hpw(w)). And indeed, the only two
such letters are d1 = c and d2 = a1 (in case a1 6= al, there cannot be d2 = al

because of n > 1 and the observation from the beginning of the proof).
Finally, let k be such that 1 6 k 6 n − 1, that is, bn = bn−1 = · · · =

bn−k+1 = c and bn−k 6= c. It is easy to see that the only two letters d1, d2 such
that we could possibly have vd1, vd2 ∈ Fact(hpw(w)) are d1 = c and either
d2 = a1 (in case k > 1) or d2 = al (in case k = 1). We first prove the following
claim: if n > lk−1 + 2k, then we cannot have both vc ∈ Fact(hpw(w)) and
vd2 ∈ Fact(hpw(w)). This is proved by showing (under the assumption
n > lk−1 +2k) that if vc ∈ Fact(hpw(w)), then a particular letter in the word
v cannot equal c, while if vd2 ∈ Fact(hpw(w)), then the same letter must
equal c.

Assume n > lk−1 + 2k and vc ∈ Fact(hpw(w)). Wherever the word
bn−k+1bn−k+2 . . . bnc = ck+1 is positioned in hpw(w), it is clearly a part of a
middle segment cs of a copy of ws = ws−1c

sßws−1 for some s > k +1. We have
that wk = wk−1c

kßwk−1 is a prefix of ws−1, and thus Ýwk = wk−1c
kßwk−1 is a

suffix of ßws−1 = ws−1. Since n− lk−1 − 2k > 1, it follows that bn−lk−1−2k 6= c
(see Figure 1).

Still assuming n > lk−1+2k, further assume that now vd2 ∈ Fact(hpw(w))
(where d2 = a1 if k > 1, and d2 = al if k = 1). Wherever the word
bn−kbn−k+1 . . . bnd2 = bn−kc

kd2 is positioned in hpw(w), it is clearly contained
in a copy of wk. We claim that there is a sequence of at least k+1 consecutive
letters c immediately preceding this copy of wk. There exists a copy of
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vc :

vz }| {
b1 . . . bn−lk−1−2k bn−lk−1−2k+1 . . . bn−k−1bn−k ck c

hpw(w) : . . . . . . wk−1 ckßwk−1| {z }
ws−1

ck cs−kßws−1 . . .

Figure 1: bn−lk−1−2k 6= c.

wk+1 = wkc
k+1Ýwk = wkc

k+1wk such that the considered copy of wk coincides
either with a prefix or with a suffix of this copy of wk+1. In the latter case,
it is preceded by ck+1, as claimed. Thus, assume the former case. The
considered copy of wk+1 now coincides either with a prefix or with a suffix
of a copy of wk+2 = wk+1c

k+2wk+1. In the latter case, it is preceded by ck+2,
and thus its prefix wk also is preceded by ck+2, as claimed. Thus, assume
again the former case. The copy of wk = wk−1c

kßwk−1 we begin with cannot
be positioned at the beginning of hpw(w), since there should be at least
n−k > lk−1 + k > lk−1 letters before ck. Therefore, if the procedure above is
repeated, it eventually happens that for some r > k the considered copy of
wk coincides with a prefix of a copy of wr that in turn coincides with a suffix
of a copy of wr+1 = wrc

r+1wr. Thus, the considered copy of wk is preceded
by cr+1, which proves the claim. Therefore, bn−lk−1−2k = c (see Figure 2).

vd2 :

vz }| {
b1 . . . bn−lk−1−2k bn−lk−1−2k+1 . . . bn−k−1bn−k ck d2

hpw(w) : . . . wrc
r+1−k ck| {z }

wr

wk−1 ck ßwk−1 . . . . . .

Figure 2: bn−lk−1−2k = c.

Summing the results, we have proved that if

n > lk−1 + 2k = (l + 2) · 2k−1 − (k − 1)− 2 + 2k = (l + 2) · 2k−1 + k − 1,

then not both vd1, vd2 can belong to Fact(hpw(w)). In order to finish the
proof, it is enough to prove the reverse direction for 1 6 k 6 n − 1. Let
n 6 lk−1 + 2k = (l + 2) · 2k−1 + k− 1. There does not exist such n for k = 1,
since otherwise we would have n 6 (l + 2) ·21−1 + 1−1 = l + 2, contradicting
the assumption n > l + 3. Thus, we are left to check the case 2 6 k 6 n− 1.
In this case we have ßwk−1 = wk−1; therefore, v is a suffix of ckwk−1c

k, and
vc, va1 ∈ Fact(hpw(w)) (Figures 1 and 2 could again help visualizing these
conclusions). This completes the proof. �
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Lemma 4.4. For each n > l + 3 we have:

Thpw(w)(n) = 0.

Proof. Each v ∈ Pal(hpw(w)) such that |v| > l + 3 clearly does not belong
to Pal(w). Let n > l + 3 be given, and let

A = {k > 1 : k 6 n 6 (l + 2) · 2k + k and k ≡ n (mod 2)},

B = {k > 1 : k 6 n + 1 6 (l + 2) · 2k + k and k ≡ n + 1 (mod 2)},

C = {k > 1 : k − 1 6 n 6 (l + 2) · 2k + k}.

We claim that A ∩B = ∅ and A ∪B = C. It is easy to see that A ∩B = ∅
and A, B ⊆ C, and thus we are left to prove that C ⊆ A ∪ B. Let k ∈ C.
If k ≡ n (mod 2), then k − 1 6= n, and thus k − 1 < n, that is, k 6 n;
therefore, k ∈ A. If k ≡ n + 1 (mod 2), then n 6= (l + 2) · 2k + k, and thus
n < (l + 2) · 2k + k, that is, n + 1 6 (l + 2) · 2k + k; therefore, k ∈ B.

By Lemma 4.2, we now deduce:

Phpw(w)(n) + Phpw(w)(n + 1) = |A|+ |B| = |C|.

By Lemma 4.3, we have:

Chpw(w)(n + 1)− Chpw(w)(n) = |{k > 0 : k 6 n 6 (l + 2) · 2k−1 + k − 1}|.

Clearly, the set {k > 0 : k 6 n 6 (l + 2) · 2k−1 + k − 1} is an interval,
say [kmin, kmax]. Actually, we have kmax = n. The set C is also an interval,
and we claim that C = [kmin − 1, n + 1]. It is easy to see that n + 1 ∈ C
and n + 2 /∈ C. Let us show the other bound. Since (l + 2) · 21−1 + 1− 1 =
l + 2 < n, we have kmin > 2. Therefore, kmin − 1 > 1. From kmin 6 n and
n 6 (l + 2) · 2kmin−1 + kmin − 1 we deduce kmin − 1 < n and kmin − 1 ∈ C.
Suppose kmin − 2 ∈ C. We have kmin − 1 6 n − 1 < n. Further, from the
supposed kmin−2 ∈ C it follows that n 6 (l+2)·2kmin−2 +kmin−2. Therefore,
kmin − 1 ∈ [kmin, n], which is a clear contradiction, and thus kmin − 2 /∈ C.
This proves C = [kmin − 1, n + 1].

Finally,

Thpw(w)(n) = Chpw(w)(n + 1)− Chpw(w)(n) + 2− Phpw(w)(n)− Phpw(w)(n + 1)

= |[kmin, n]|+ 2− |[kmin − 1, n + 1]|

= (n− kmin + 1) + 2− (n + 1− (kmin − 1) + 1) = 0,

which was to be proved. �
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Lemma 4.5. We have:

Chpw(w)(l+3) = 2|{v ∈ Pal(hpw(w))\Pal(w) : |v| 6 l+3}|−Phpw(w)(l+3)−2.

Proof. We begin by listing all the factors of hpw(w) of length l+3. However,
since Fact(hpw(w)) is closed under reversal, we shall not include both a factor
and its reversal in the list, but choose only one representative for each such
pair. We claim that the left column of Table 1 presents the described list.

the longest prefix or suffix of u
u ∈ Fact(hpw(w)), |u| = l + 3

from Pal(hpw(w)) \ (Pal(w) ∪ {c})

wcalal−1 al−1alcalal−1

cwcal alcal

ccwc cc
cccw ccc
a1ccw a1cca1

al−s . . . al−1alcalal−1 . . . as

(l − 2 > s > d l
2
e) as . . . al−1alcalal−1 . . . as

al+3−t . . . a2a1c
t

(4 6 t 6 l + 2)
ct

al+2−t . . . a2a1c
ta1

(3 6 t 6 l + 1)
a1c

ta1

al+3−s−t . . . a2a1c
ta1a2 . . . as

(2 6 s 6 b l+1
2
c, 2 6 t 6 l + 3− 2s)

as . . . a2a1c
ta1a2 . . . as

cl+3 cl+3

Table 1: Factors and their longest palindromic prefixes or suffixes.

The list is compiled by the following approach:

• We first enumerate all u ∈ Fact(hpw(w)), |u| = l + 3 such that w ∈
Fact(u). Depending on whether w begins with the first, the second, the
third or the fourth letter of u, we easily see that in all of these cases
but the last one the other characters are uniquely determined, while in
the last case there are exactly two possibilities. These five factors are
shown in the first group. These factors also stand as the representative
of factors u such that Üw ∈ Fact(u).

• We now enumerate all u ∈ Fact(hpw(w)), |u| = l + 3, such that u
ends with a prefix of Üw, say alal−1 . . . as. We see that in this case

14



u = al−s . . . al−1alcalal−1 . . . as (the “left end” is calculated so that (l−
(l−s)+1)+1+(l−s+1) = l+3). Since we require w, Üw /∈ Fact(u) (in
order to avoid repeating a factor already included in the first group), we
deduce the bounds s > 2 and s 6 l−2. Furthermore, since reversals of
factors from this group are of the same form, in order to avoid repeating
we require |al−s . . . al−1al| > |alal−1 . . . as|, that is, s > l − s, that is,
s > d l

2
e. Altogether, the bounds are l − 2 > s > d l

2
e (for l = 3 and

l = 2 this group is empty).

• In the third group we enumerate all the considered factors u that end
with ct (where t is maximal possible), but u 6= cl+3. It cannot be t =
1, 2, 3, since u would contain w or Üw. Therefore, u = al+3−t . . . a2a1c

t

with bounds 4 6 t 6 l + 2.

• We now check what are the possibilities when u ends with a prefix of
w, say a1a2 . . . as. In fact, since the case s = 1 is slightly different from
the cases where s > 1 (the lower bounds for t differ), we treat them
separately. Thus, in this group we let u = al+2−tal+1−t . . . a1c

ta1. The
bounds are l − 1 > l + 2− t > 1, that is, 3 6 t 6 l + 1.

• Let now u = al+3−s−t . . . a2a1c
ta1a2 . . . as, s > 2. The bound t > 2

is clear. In order to avoid including both a factor and its reversal, we
require |al+3−s−t . . . a2a1| > |a1a2 . . . as|, that is, l+3−s−t > s, that is,
t 6 l+3−2s. For a fixed s, we have the bounds l−1 > l+3−s−t > 1,
that is, 4−s 6 t 6 l+2−s. Since 4−s 6 2 and l+3−2s 6 l+2−s, the
bounds for t are 2 6 t 6 l + 3− 2s. Considering the bounds for s, we
already have s > 2, and the upper bound follows from the requirement
that t exists: 2 6 l + 3− 2s, that is, s 6 b l+1

2
c.

• Finally, there is one more factor not included so far: cl+3.

For each of the enumerated factors, we find out that either its longest
palindromic prefix or longest palindromic suffix, but not both, belongs to
Pal(hpw(w)) \ (Pal(w) ∪ {c}). These prefixes and suffixes are shown in the
right column of Table 1. We claim that such a correspondence is in fact a
bijection between the left column and the set {v ∈ Pal(hpw(w)) \ Pal(w) :
2 6 |v| 6 l + 3}. Therefore, it is enough to check whether each v from this
set appears exactly once in the right column.

We shall enumerate these palindromes by ordering them with respect
to the number of consecutive occurrences of the letter c in the middle (by
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Lemma 4.2, this parameter and the length uniquely determine palindrome).
If there is one letter c in the middle, the palindromes of length 3 and 5 are in
the first group, while the palindromes of length 7 and more are in the second
group. If there are two letters c in the middle, the palindromes of length 2
and 4 are in the first group, while the palindromes of length 6 and more are
in the fifth group (for t = 2, s ranges from 2 to b l+1

2
c, and thus the length of

the observed palindromes takes all the even values from 6 to l + 3 or l + 2,
depending on the parity of l). If there are three letters c in the middle, the
palindrome of length 3 is in the first group, the palindrome of length 5 is in
the fourth group, while the palindromes of length 7 and more are in the fifth
group (for t = 3, s ranges from 2 to the largest value meeting the requirement
3 6 l + 3 − 2s, which is b l

2
c, and thus the length of observed palindromes

takes all the odd values from 7 to l + 3 or l + 2). Continuing in this manner,
we enumerate all the considered palindromes, and prove the claim.

Therefore, there are |{v ∈ Pal(hpw(w))\Pal(w) : 2 6 |v| 6 l+3}| factors
in the left column. Since for each pair {u, eu} of factors of hpw(w) of length
l + 3 only one representative is included in the left column, we have that the
number of factors of hpw(w) of length l+3 equals the number of palindromic
factors of hpw(w) of length l + 3 plus twice the number of nonpalindromic
factors in the left column. In short:

Chpw(w)(l + 3)

= Phpw(w)(l + 3)

+ 2
�
|{v ∈ Pal(hpw(w)) \ Pal(w) : 2 6 |v| 6 l + 3}| − Phpw(w)(l + 3)

�

= 2|{v ∈ Pal(hpw(w)) \ Pal(w) : 2 6 |v| 6 l + 3}| − Phpw(w)(l + 3)

= 2|{v ∈ Pal(hpw(w)) \ Pal(w) : |v| 6 l + 3} \ {c}| − Phpw(w)(l + 3)

= 2|{v ∈ Pal(hpw(w)) \ Pal(w) : |v| 6 l + 3}| − Phpw(w)(l + 3)− 2,

which was to be proved. �

16



Proof of Theorem 4.1. We have:

∞X
n=0

Thpw(w)(n)
L4.4
=

l+2X
n=0

Thpw(w)(n)

=
l+2X
n=0

(Chpw(w)(n + 1)− Chpw(w)(n) + 2− Phpw(w)(n)− Phpw(w)(n + 1))

=
l+2X
n=0

Chpw(w)(n + 1)−
l+2X
n=0

Chpw(w)(n) + 2(l + 3)

−
l+2X
n=0

Phpw(w)(n)−
l+2X
n=0

Phpw(w)(n + 1)

= Chpw(w)(l + 3)− Chpw(w)(0) + 2(l + 3)

− 2
l+3X
n=0

Phpw(w)(n) + Phpw(w)(0) + Phpw(w)(l + 3)

= Chpw(w)(l + 3)− 1 + 2(l + 3)− 2
l+3X
n=0

Phpw(w)(n) + 1 + Phpw(w)(l + 3)

L4.5
= 2|{v ∈ Pal(hpw(w)) \ Pal(w) : |v| 6 l + 3}| − Phpw(w)(l + 3)− 2

+ 2l + 6− 2
l+3X
n=0

Phpw(w)(n) + Phpw(w)(l + 3)

= 2|{v ∈ Pal(hpw(w)) \ Pal(w) : |v| 6 l + 3}|+ 2l + 4− 2
l+3X
n=0

Phpw(w)(n)

= 2|{v ∈ Pal(hpw(w)) \ Pal(w) : |v| 6 l + 3}|+ 2l + 4

− 2|{v ∈ Pal(hpw(w)) : |v| 6 l + 3}|

= 2l + 4− 2|{v ∈ Pal(w) : |v| 6 l + 3}| = 2l + 4− 2|Pal(w)|

= 2(D(w) + 1)
T3.2
= 2D(hpw(w)),

which was to be proved. �

Note. After this paper was submitted, a proof of the full Brlek-Reutenauer
conjecture, by Balková, Pelantová and Starosta, appeared in [4].
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5 Longest palindromic suffixes of factors of a

highly potential word

It was claimed in [3, Theorem 5.7] that for any infinite word u having the set
of factors closed under reversal and containing infinitely many palindromes
the following statements are equivalent:

(a) D(u) <∞;

(b) there exists H ∈ N0 such that the longest palindromic suffix of any
v ∈ Fact(u), of length |v| > H, occurs in v exactly once.

A mistake in the proof was spotted in [5], and a counterexample was con-
structed (which is actually not a highly potential word; this can be seen
by, e.g., noting that the constructed counterexample does not have any two
occurrences of the same letter next to each other). We hereby show that ac-
tually all the highly potential words are counterexamples to the above claim.
Since each highly potential word has the set of factors closed under reversal,
contains infinitely many palindromes and is of finite defect, it is enough to
prove:

Theorem 5.1. Each highly potential word hpw(w) contains arbitrarily long
factors v such that the longest palindromic suffix of v occurs in v more than
once.

Proof. For each i > 2 the word wc = w0c is a prefix of the word wi−1 = ßwi−1.
Therefore, ciwc ∈ Fact(wi) ⊆ Fact(hpw(w)). Since the letter c does not
occur in the word w, and w 6= Üw, the longest palindromic suffix of the word
ciwc is clearly only the letter c, having i + 1 occurrences in ciwc. �

6 Highly potential word fixed by a morphism

As mentioned in Section 1, Brlek and Reutenauer showed that Conjecture
2.6 holds for all fixed points of nonidentical morphisms, under the conjecture
that there does not exist an aperiodic word of finite positive defect that is a
fixed point of a nonidentical morphism. However, in this section we construct
a highly potential word that is a fixed point of a nonidentical morphism, thus
showing that the conjecture assumed by Brlek and Reutenauer is false.
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Theorem 6.1. Let Σ = {a, b, c}, let the morphism ϕ be defined by ϕ(a) =
abcbac, ϕ(b) = ε, ϕ(c) = c, and let w = ab. Then:

ϕ(hpw(w)) = hpw(w).

Proof. It is enough to prove that for each i ∈ N0 the word ϕ(wi) is a prefix
of hpw(w). By induction on i, we shall prove that, for each i ∈ N0, ϕ(wi) =
wi+1c (and since this is a prefix of wi+2 and therefore also a prefix of hpw(w),
the proof would thus be completed). We have:

w0 = ab;

w1 = abcba;

w2 = abcbaccabcba.

For i = 0 we have:

ϕ(w0) = ϕ(ab) = abcbac = w1c.

For i = 1 we have:

ϕ(w1) = ϕ(abcba) = abcbac c abcbac = w2c.

For i > 2 we have:

ϕ(wi) = ϕ(wi−1c
ißwi−1) = ϕ(wi−1c

iwi−1) = ϕ(wi−1)ϕ(c)iϕ(wi−1)

= wic ci wic = wic
i+1wic = wi+1c,

which was to be proved. �

Notes. (1) The reader may check that the highly potential word considered
in the previous theorem (which is the essentially unique highly potential word
generated by a word of length 2) is also fixed by a nonerasing morphism ϕ
(that is: a morphism that maps none of the letters to ε) defined by ϕ(a) =
ϕ(b) = abcbacc and ϕ(c) = c.

(2) Neither the morphism ϕ from Theorem 6.1 nor the one from the
previous note is primitive. Therefore, the original conjecture by Blondin-
Massé et al., mentioned in the Introduction, is still standing.
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